Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43.544
Filtrar
1.
J Mol Neurosci ; 74(2): 44, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630337

RESUMO

Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.


Assuntos
Fármacos Neuroprotetores , Sterculia , Ratos , Animais , Ratos Wistar , Fármacos Neuroprotetores/farmacologia , Caspase 3 , Peróxido de Hidrogênio , Oxidopamina , Etanol/toxicidade
2.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612476

RESUMO

The review introduces the stages of formation and experimental confirmation of the hypothesis regarding the mutual potentiation of neuroprotective effects of hypoxia and hypercapnia during their combined influence (hypercapnic hypoxia). The main focus is on the mechanisms and signaling pathways involved in the formation of ischemic tolerance in the brain during intermittent hypercapnic hypoxia. Importantly, the combined effect of hypoxia and hypercapnia exerts a more pronounced neuroprotective effect compared to their separate application. Some signaling systems are associated with the predominance of the hypoxic stimulus (HIF-1α, A1 receptors), while others (NF-κB, antioxidant activity, inhibition of apoptosis, maintenance of selective blood-brain barrier permeability) are mainly modulated by hypercapnia. Most of the molecular and cellular mechanisms involved in the formation of brain tolerance to ischemia are due to the contribution of both excess carbon dioxide and oxygen deficiency (ATP-dependent potassium channels, chaperones, endoplasmic reticulum stress, mitochondrial metabolism reprogramming). Overall, experimental studies indicate the dominance of hypercapnia in the neuroprotective effect of its combined action with hypoxia. Recent clinical studies have demonstrated the effectiveness of hypercapnic-hypoxic training in the treatment of childhood cerebral palsy and diabetic polyneuropathy in children. Combining hypercapnic hypoxia with pharmacological modulators of neuro/cardio/cytoprotection signaling pathways is likely to be promising for translating experimental research into clinical medicine.


Assuntos
Neuroproteção , Fármacos Neuroprotetores , Criança , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Hipercapnia , Dióxido de Carbono , Hipóxia
3.
Sci Rep ; 14(1): 7707, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565590

RESUMO

Neurodegenerative diseases, characterized by progressive neuronal dysfunction and loss, pose significant health challenges. Glutamate accumulation contributes to neuronal cell death in diseases such as Alzheimer's disease. This study investigates the neuroprotective potential of Albizia lebbeck leaf extract and its major constituent, luteolin, against glutamate-induced hippocampal neuronal cell death. Glutamate-treated HT-22 cells exhibited reduced viability, altered morphology, increased ROS, and apoptosis, which were attenuated by pre-treatment with A. lebbeck extract and luteolin. Luteolin also restored mitochondrial function, decreased mitochondrial superoxide, and preserved mitochondrial morphology. Notably, we first found that luteolin inhibited the excessive process of mitophagy via the inactivation of BNIP3L/NIX and inhibited lysosomal activity. Our study suggests that glutamate-induced autophagy-mediated cell death is attenuated by luteolin via activation of mTORC1. These findings highlight the potential of A. lebbeck as a neuroprotective agent, with luteolin inhibiting glutamate-induced neurotoxicity by regulating autophagy and mitochondrial dynamics.


Assuntos
Ácido Glutâmico , Fármacos Neuroprotetores , Ácido Glutâmico/metabolismo , Luteolina/farmacologia , Linhagem Celular , Estresse Oxidativo , Morte Celular , Apoptose , Fármacos Neuroprotetores/farmacologia , Autofagia , Espécies Reativas de Oxigênio/metabolismo
4.
Biol Sex Differ ; 15(1): 30, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566248

RESUMO

BACKGROUND: Neonatal hypoxia ischemia (HI) related brain injury is one of the major causes of learning disabilities and memory deficits in children. In both human and animal studies, female neonate brains are less susceptible to HI than male brains. Phosphorylation of the nerve growth factor receptor TrkB has been shown to provide sex-specific neuroprotection following in vivo HI in female mice in an estrogen receptor alpha (ERα)-dependent manner. However, the molecular and cellular mechanisms conferring sex-specific neonatal neuroprotection remain incompletely understood. Here, we test whether female neonatal hippocampal neurons express autonomous neuroprotective properties and assess the ability of testosterone (T) to alter this phenotype. METHODS: We cultured sexed hippocampal neurons from ERα+/+ and ERα-/- mice and subjected them to 4 h oxygen glucose deprivation and 24 h reoxygenation (4-OGD/24-REOX). Sexed hippocampal neurons were treated either with vehicle control (VC) or the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) following in vitro ischemia. End points at 24 h REOX were TrkB phosphorylation (p-TrkB) and neuronal survival assessed by immunohistochemistry. In addition, in vitro ischemia-mediated ERα gene expression in hippocampal neurons were investigated following testosterone (T) pre-treatment and TrkB antagonist therapy via q-RTPCR. Multifactorial analysis of variance was conducted to test for significant differences between experimental conditions. RESULTS: Under normoxic conditions, administration of 3 µM 7,8-DHF resulted an ERα-dependent increase in p-TrkB immunoexpression that was higher in female, as compared to male neurons. Following 4-OGD/24-REOX, p-TrkB expression increased 20% in both male and female ERα+/+ neurons. However, with 3 µM 7,8-DHF treatment p-TrkB expression increased further in female neurons by 2.81 ± 0.79-fold and was ERα dependent. 4-OGD/24-REOX resulted in a 56% increase in cell death, but only female cells were rescued with 3 µM 7,8-DHF, again in an ERα dependent manner. Following 4-OGD/3-REOX, ERα mRNA increased ~ 3 fold in female neurons. This increase was blocked with either the TrkB antagonist ANA-12 or pre-treatment with T. Pre-treatment with T also blocked the 7,8-DHF- dependent sex-specific neuronal survival in female neurons following 4-OGD/24-REOX. CONCLUSIONS: OGD/REOX results in sex-dependent TrkB phosphorylation in female neurons that increases further with 7,8-DHF treatment. TrkB phosphorylation by 7,8-DHF increased ERα mRNA expression and promoted cell survival preferentially in female hippocampal neurons. The sex-dependent neuroprotective actions of 7,8-DHF were blocked by either ANA-12 or by T pre-treatment. These results are consistent with a model for a female-specific neuroprotective pathway in hippocampal neurons in response to hypoxia. The pathway is activated by 7,8-DHF, mediated by TrkB phosphorylation, dependent on ERα and blocked by pre-exposure to T.


Assuntos
Receptor alfa de Estrogênio , Fármacos Neuroprotetores , Criança , Feminino , Animais , Masculino , Camundongos , Humanos , Receptor alfa de Estrogênio/metabolismo , Neuroproteção , Caracteres Sexuais , Testosterona/farmacologia , Testosterona/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo , Isquemia , Hipóxia/metabolismo , RNA Mensageiro/metabolismo
5.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 563-570, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597448

RESUMO

OBJECTIVE: To observe neuroprotective effects of Ca2+/calmodulin-dependent kinase Ⅱ (CaMK Ⅱ)γ and CaMkII δ against acute neuronal ischemic reperfusion injury in mice and explore the underlying mechanism. METHODS: Primary cultures of brain neurons isolated from fetal mice (gestational age of 18 days) were transfected with two specific siRNAs (si-CAMK2G and si-CAMK2D) or a control sequence (si-NT). After the transfection, the cells were exposed to oxygen-glucose deprivation/reperfusion (OGD/R) conditions for 1 h followed by routine culture. The expressions of phosphatidylinositol-3-kinase/extracellular signal-regulated kinase (PI3K/Akt/Erk) signaling pathway components in the neurons were detected using immunoblotting. The expressions of the PI3K/Akt/Erk signaling pathway proteins were also detected in the brain tissues of mice receiving middle cerebral artery occlusion (MCAO) or sham operation. RESULTS: The neuronal cells transfected with siCAMK2G showed significantly lower survival rates than those with si-NT transfection at 12, 24, 48, and 72 h after OGD/R (P < 0.01), and si-CAMK2G transfection inhibited OGD/R-induced upregulation of CaMKⅡγ expression. Compared to si-NT, transfection with si-CAMK2G and si-CAMK2D both significantly inhibited the expressions of PI3K/Akt/Erk signaling pathway components (P < 0.01). In the mouse models of MCAO, the expressions of CaMKⅡδ and CaMKⅡγ were significantly increased in the brain, where activation of the PI3K/Akt/Erk signaling pathway was detected. The expression levels of CaMKⅡδ, CaMKⅡγ, Erk, phosphorylated Erk, Akt, and phosphorylated Akt were all significantly higher in MCAO mice than in the sham-operated mice at 24, 48, 72, and 96 h after reperfusion (P < 0.05). CONCLUSION: The neuroprotective effects of CaMKⅡδ and CaMKⅡγ against acute neuronal ischemic reperfusion injury are mediated probably by the PI3K/Akt/Erk pathway.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Camundongos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média
6.
Acta Neurobiol Exp (Wars) ; 84(1): 98-110, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38587319

RESUMO

Neuroinflammation is a process associated with degeneration and loss of neurons in different parts of the brain. The most important damage mechanisms in its formation are oxidative stress and inflammation. This study aimed to investigate the protective effects of cannabidiol (CBD) against neuroinflammation through various mechanisms. Thirty­two female rats were randomly divided into 4 groups as control, lipopolysaccharide (LPS), LPS + CBD and CBD groups. After six hours following LPS administration, rats were sacrificed, brain and cerebellum tissues were obtained. Tissues were stained with hematoxylin­eosin for histopathological analysis. Apelin and tyrosine hydroxylase synthesis were determined immunohistochemically. Total oxidant status and total antioxidant status levels were measured, and an oxidative stress index was calculated. Protein kinase B (AKT), brain-derived neurotrophic factor (BDNF), cyclic­AMP response element­binding protein (CREB) and nuclear factor erythroid 2­related factor 2 (NRF2) mRNA expression levels were also determined. In the LPS group, hyperemia, degeneration, loss of neurons and gliosis were seen in all three tissues. Additionally, Purkinje cell loss in the cerebellum, as well as neuronal loss in the cerebral cortex and hippocampus, were found throughout the LPS group. The expressions of AKT, BDNF, CREB and NRF2, apelin and tyrosine hydroxylase synthesis all decreased significantly. CBD treatment reversed these changes and ameliorated oxidative stress parameters. CBD showed protective effects against neuroinflammation via regulating AKT, CREB, BDNF expressions, NRF2 signaling, apelin and tyrosine hydroxylase synthesis.


Assuntos
Canabidiol , Fármacos Neuroprotetores , Feminino , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canabidiol/farmacologia , Canabidiol/metabolismo , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Dopamina/farmacologia , Apelina/metabolismo , Apelina/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Doenças Neuroinflamatórias , Lipopolissacarídeos/toxicidade , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/farmacologia , Hipocampo/metabolismo , Expressão Gênica
7.
J Neurosci Res ; 102(4): e25329, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597144

RESUMO

There is a need for new treatments to reduce brain injuries derived from neonatal hypoxia/ischemia. The only viable option used in the clinic today in infants born at term is therapeutic hypothermia, which has a limited efficacy. Treatments with exogenous RNase have shown great promise in a range of different adult animal models including stroke, ischemia/reperfusion injury, or experimental heart transplantation, often by conferring vascular protective and anti-inflammatory effects. However, any neuroprotective function of RNase treatment in the neonate remains unknown. Using a well-established model of neonatal hypoxic/ischemic brain injury, we evaluated the influence of RNase treatment on RNase activity, gray and white matter tissue loss, blood-brain barrier function, as well as levels and expression of inflammatory cytokines in the brain up to 6 h after the injury using multiplex immunoassay and RT-PCR. Intraperitoneal treatment with RNase increased RNase activity in both plasma and cerebropinal fluids. The RNase treatment resulted in a reduction of brain tissue loss but did not affect the blood-brain barrier function and had only a minor modulatory effect on the inflammatory response. It is concluded that RNase treatment may be promising as a neuroprotective regimen, whereas the mechanistic effects of this treatment appear to be different in the neonate compared to the adult and need further investigation.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Recém-Nascido , Lactente , Humanos , Animais Recém-Nascidos , Ribonucleases/metabolismo , Ribonucleases/farmacologia , Lesões Encefálicas/tratamento farmacológico , Encéfalo/metabolismo , Isquemia/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Modelos Animais de Doenças
8.
J Biochem Mol Toxicol ; 38(4): e23708, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597299

RESUMO

Halomonas pacifica CARE-V15 was isolated from the southeastern coast of India to determine its genome sequence. Secondary metabolite gene clusters were identified using an anti-SMASH server. The concentrated crude ethyl acetate extract was evaluated by GC-MS. The bioactive compound from the crude ethyl acetate extract was fractionated by gel column chromatography. HPLC was used to purify the 3,6-diisobutyl-2,5-piperazinedione (DIP), and the structure was determined using FTIR and NMR spectroscopy. Purified DIP was used in an in silico molecular docking analysis. Purified DIP exhibits a stronger affinity for antioxidant genes like glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GSR). Using in silco molecular docking analysis, the protein-ligand binding affinities of GSR (-4.70 kcal/mol), GST (-5.27 kcal/mol), and GPx (-5.37 kcal/mol) were measured. The expression of antioxidant genes were investigated by qRT-PCR. The in vivo reactive oxygen species production, lipid peroxidation, and cell death levels were significantly (p ≤ 0.05) increased in OA-induced group, but all these levels were significantly (p ≤ 0.05) decreased in the purified DIP pretreated group. Purified DIP from halophilic bacteria could thus be a useful treatment for neurological disorders associated with oxidative stress.


Assuntos
Acetatos , Antioxidantes , Halomonas , Fármacos Neuroprotetores , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Peixe-Zebra/metabolismo , Fármacos Neuroprotetores/farmacologia , Ácido Okadáico/metabolismo , Ácido Okadáico/farmacologia , Simulação de Acoplamento Molecular , Estresse Oxidativo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Dicetopiperazinas/metabolismo , Dicetopiperazinas/farmacologia , Glutationa Transferase/metabolismo
9.
PLoS One ; 19(4): e0300203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564643

RESUMO

Recent studies highlighted the role of astrocytes in neuroinflammatory diseases, particularly multiple sclerosis, interacting closely with other CNS components but also with the immune cells. However, due to the difficulty in obtaining human astrocytes, their role in these pathologies is still unclear. In this study we develop an astrocyte in vitro model to evaluate their role in multiple sclerosis after being treated with CSF isolated from both healthy and MS diagnosed patients. Gene expression and ELISA assays reveal that several pro-inflammatory markers IL-1ß, TNF-α and IL-6, were significantly downregulated in astrocytes treated with MS-CSF. In contrast, neurotrophic survival, and growth factors, and GFAP, BDNF, GDNF and VEGF, were markedly elevated upon the same treatment. In summary, this study supports the notion of the astrocyte involvement in MS. The results reveal the neuroprotective role of astrocyte in MS pathogenicity by suppressing excessive inflammation and increasing the expression of tropic factors.


Assuntos
Esclerose Múltipla , Fármacos Neuroprotetores , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Esclerose Múltipla/patologia , Astrócitos/metabolismo , Inflamação/patologia , Fator de Necrose Tumoral alfa/metabolismo
10.
Neurotox Res ; 42(2): 23, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578482

RESUMO

Alzheimer's disease (AD) involves a neurodegenerative process that has not yet been prevented, reversed, or stopped. Continuing with the search for natural pharmacological treatments, flavonoids are a family of compounds with proven neuroprotective effects and multi-targeting behavior. The American genus Dalea L. (Fabaceae) is an important source of bioactive flavonoids. In this opportunity, we tested the neuroprotective potential of three prenylated flavanones isolated from Dalea species in a new in vitro pre-clinical AD model previously developed by us. Our approach consisted in exposing neural cells to conditioned media (3xTg-AD ACM) from neurotoxic astrocytes derived from hippocampi and cortices of old 3xTg-AD mice, mimicking a local neurodegenerative microenvironment. Flavanone 1 and 3 showed a neuroprotective effect against 3xTg-AD ACM, being 1 more active than 3. The structural requirements to afford neuroprotective activity in this model are a 5'-dimethylallyl and 4'-hydroxy at the B ring. In order to search the mechanistic performance of the most active flavanone, we focus on the flavonoid-mediated regulation of GSK-3ß-mediated tau phosphorylation previously reported. Flavanone 1 treatment decreased the rise of hyperphosphorylated tau protein neuronal levels induced after 3xTg-AD ACM exposure and inhibited the activity of GSK-3ß. Finally, direct exposure of these neurotoxic 3xTg-AD astrocytes to flavanone 1 resulted in toxicity to these cells and reduced the neurotoxicity of 3xTg-AD ACM as well. Our results allow us to present compound 1 as a natural prenylated flavanone that could be used as a precursor to development and design of future drug therapies for AD.


Assuntos
Doença de Alzheimer , Flavanonas , Fármacos Neuroprotetores , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos Transgênicos , Proteínas tau/metabolismo , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Modelos Animais de Doenças , Fosforilação , Peptídeos beta-Amiloides/metabolismo
12.
N Engl J Med ; 390(13): 1176-1185, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38598572

RESUMO

BACKGROUND: Lixisenatide, a glucagon-like peptide-1 receptor agonist used for the treatment of diabetes, has shown neuroprotective properties in a mouse model of Parkinson's disease. METHODS: In this phase 2, double-blind, randomized, placebo-controlled trial, we assessed the effect of lixisenatide on the progression of motor disability in persons with Parkinson's disease. Participants in whom Parkinson's disease was diagnosed less than 3 years earlier, who were receiving a stable dose of medications to treat symptoms, and who did not have motor complications were randomly assigned in a 1:1 ratio to daily subcutaneous lixisenatide or placebo for 12 months, followed by a 2-month washout period. The primary end point was the change from baseline in scores on the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III (range, 0 to 132, with higher scores indicating greater motor disability), which was assessed in patients in the on-medication state at 12 months. Secondary end points included other MDS-UPDRS subscores at 6, 12, and 14 months and doses of levodopa equivalent. RESULTS: A total of 156 persons were enrolled, with 78 assigned to each group. MDS-UPDRS part III scores at baseline were approximately 15 in both groups. At 12 months, scores on the MDS-UPDRS part III had changed by -0.04 points (indicating improvement) in the lixisenatide group and 3.04 points (indicating worsening disability) in the placebo group (difference, 3.08; 95% confidence interval, 0.86 to 5.30; P = 0.007). At 14 months, after a 2-month washout period, the mean MDS-UPDRS motor scores in the off-medication state were 17.7 (95% CI, 15.7 to 19.7) with lixisenatide and 20.6 (95% CI, 18.5 to 22.8) with placebo. Other results relative to the secondary end points did not differ substantially between the groups. Nausea occurred in 46% of participants receiving lixisenatide, and vomiting occurred in 13%. CONCLUSIONS: In participants with early Parkinson's disease, lixisenatide therapy resulted in less progression of motor disability than placebo at 12 months in a phase 2 trial but was associated with gastrointestinal side effects. Longer and larger trials are needed to determine the effects and safety of lixisenatide in persons with Parkinson's disease. (Funded by the French Ministry of Health and others; LIXIPARK ClinicalTrials.gov number, NCT03439943.).


Assuntos
Antiparkinsonianos , 60650 , Doença de Parkinson , Peptídeos , Humanos , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/efeitos adversos , Antiparkinsonianos/uso terapêutico , Pessoas com Deficiência , Método Duplo-Cego , Transtornos Motores/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Peptídeos/administração & dosagem , Peptídeos/efeitos adversos , Peptídeos/uso terapêutico , Resultado do Tratamento , 60650/administração & dosagem , 60650/efeitos adversos , 60650/uso terapêutico , Progressão da Doença , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/efeitos adversos , Fármacos Neuroprotetores/uso terapêutico , Injeções Subcutâneas
13.
BMC Complement Med Ther ; 24(1): 162, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632534

RESUMO

The incidence of dementia is rising, with neuronal cell death from oxidative stress and apoptosis recognized as a significant contributor to its development. However, effective strategies to combat this condition are lacking, necessitating further investigation. This study aimed to assess the potential of an anthocyanin-rich extract from Zea mays L. var. ceratina (AZC) in alleviating neuronal cell death.Neurotoxicity was induced in SH-SY5Y cells using hydrogen peroxide (H2O2) at a concentration of 200 µM. Cells were pretreated with varying doses (31.25 and 62.5 µg/mL) of AZC. Cell viability was assessed using the MTT assay, and molecular mechanisms including reactive oxygen species (ROS) levels, antioxidant enzyme activities (catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px)), malondialdehyde (MDA) levels for oxidative stress, and the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), cAMP response element-binding protein (CREB), and apoptotic factors (B-cell lymphoma 2 (Bcl-2), caspase 3) were explored.Results showed that AZC significantly improved cell viability, reduced ROS production and MDA levels, and downregulated caspase 3 expression. It enhanced CAT, SOD, and GSH-Px activities, activated ERK1/2 and CREB, and upregulated Bcl-2 expression. These findings support the neuroprotective effects of AZC, suggesting it activates ERK1/2, leading to CREB activation and subsequent upregulation of Bcl-2 expression while suppressing caspase 3. AZC may mitigate neuronal cell death by reducing ROS levels through enhanced scavenging enzyme activities.In conclusion, this study underscores the potential of AZC as a neuroprotective agent against neuronal cell death. However, further investigations including toxicity assessments, in vivo studies, and clinical trials are necessary to validate its benefits in neuroprotection.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Humanos , Animais , Abelhas , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo , Antocianinas , Zea mays/metabolismo , Linhagem Celular Tumoral , Morte Celular , Antioxidantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Superóxido Dismutase/metabolismo
14.
ScientificWorldJournal ; 2024: 8034401, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633104

RESUMO

Several studies have demonstrated that Moringa oleifera (MO) has different pharmacological properties, including neuroprotective effects. However, the role of MO in preventing brain impairment in high-fat, high-fructose diet (HFFD) remains unknown. This study aimed to investigate the neuroprotective effects of MO leaves aqueous extract (MOE) and moringa seed oil (MOO) against brain impairment in mice with HFFD. Twenty-eight male mice were randomly divided into four groups: normal diet, HFFD, HFFD + MOE 500 mg/kgBW, and HFFD + MOO 2 mL/kgBW. Cognitive function was assessed using the Y-maze and novel object recognition (NOR) tests. The p16, p21, and BDNF expressions were analyzed using the RT-PCR method. Senescence-associated beta-galactosidase (SA-ß-gal) staining in the brain was also performed. The results showed that administration of MOE or MOO could increase the percentage of alternation and recognition of new objects, prevent the increase of p16 and p21 expression, and ameliorate SA-ß-Gal activity in the brain. MOO, but not MOE, increased BDNF expression in senescence brains isolated from HFFD mice. The findings indicate that MOO and MOE possess neuroprotective properties, with MOO demonstrating a greater ability to inhibit the brain senescence process compared to MOE.


Assuntos
Moringa oleifera , Fármacos Neuroprotetores , Camundongos , Masculino , Animais , Frutose , Fator Neurotrófico Derivado do Encéfalo , Cognição , Dieta Hiperlipídica , Óleos de Plantas
15.
J Toxicol Environ Health A ; 87(10): 448-456, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38557302

RESUMO

Cerebral ischemia-reperfusion injury (CIRI) occurs frequently clinically as a complication following cardiovascular resuscitation resulting in neuronal damage specifically to the hippocampal CA1 region with consequent cognitive impairment. Apoptosis and oxidative stress were proposed as major risk factors associated with CIRI development. Previously, glycosides obtained from Cistanche deserticola (CGs) were shown to play a key role in counteracting CIRI; however, the underlying mechanisms remain to be determined. This study aimed to investigate the neuroprotective effect of CGs on subsequent CIRI in rats. The model of CIRI was established for 2 hr and reperfusion for 24 hr by middle cerebral artery occlusion (MCAO) model. The MCAO rats were used to measure the antioxidant and anti-apoptotic effects of CGs on CIRI. Neurological function was evaluated by the Longa neurological function score test. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was used to detect the area of cerebral infarction. Nissl staining was employed to observe neuronal morphology. TUNEL staining was used to detect neuronal apoptosis, while Western blot determined protein expression levels of factors for apoptosis-related and PI3K/AKT/Nrf2 signaling pathway. Data demonstrated that CGs treatment improved behavioral performance, brain injury, and enhanced antioxidant and anti-apoptosis in CIRI rats. In addition, CGs induced activation of PI3K/AKT/Nrf2 signaling pathway accompanied by inhibition of the expression of apoptosis-related factors. Evidence indicates that CGs amelioration of CIRI involves activation of the PI3K/AKT/Nrf2 signaling pathway associated with increased cellular viability suggesting these glycosides may be considered as an alternative compound for CIRI treatment.


Assuntos
Isquemia Encefálica , Cistanche , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antioxidantes/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fosfatidilinositol 3-Quinases/farmacologia , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Fator 2 Relacionado a NF-E2/farmacologia , Apoptose , Isquemia Encefálica/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Fármacos Neuroprotetores/farmacologia
16.
Molecules ; 29(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611777

RESUMO

Iridoid components have been reported to have significant neuroprotective effects. However, it is not yet clear whether the efficacy and mechanisms of iridoid components with similar structures are also similar. This study aimed to compare the neuroprotective effects and mechanisms of eight iridoid components (catalpol (CAT), genipin (GE), geniposide (GEN), geniposidic acid (GPA), aucubin (AU), ajugol (AJU), rehmannioside C (RC), and rehmannioside D (RD)) based on corticosterone (CORT)-induced injury in PC12 cells. PC12 cells were randomly divided into a normal control group (NC), model group (M), positive drug group (FLX), and eight iridoid administration groups. Firstly, PC12 cells were induced with CORT to simulate neuronal injury. Then, the MTT method and flow cytometry were applied to evaluate the protective effects of eight iridoid components on PC12 cell damage. Thirdly, a cell metabolomics study based on ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was performed to explore changes in relevant biomarkers and metabolic pathways following the intervention of administration. The MTT assay and flow cytometry analysis showed that the eight iridoid components can improve cell viability, inhibit cell apoptosis, reduce intracellular ROS levels, and elevate MMP levels. In the PCA score plots, the sample points of the treatment groups showed a trend towards approaching the NC group. Among them, AU, AJU, and RC had a weaker effect. There were 38 metabolites (19 metabolites each in positive and negative ion modes, respectively) identified as potential biomarkers during the experiment, among which 23 metabolites were common biomarkers of the eight iridoid groups. Pathway enrichment analysis revealed that the eight iridoid components regulated the metabolism mainly in relation to D-glutamine and D-glutamate metabolism, arginine biosynthesis, the TCA cycle, purine metabolism, and glutathione metabolism. In conclusion, the eight iridoid components could reverse an imbalanced metabolic state by regulating amino acid neurotransmitters, interfering with amino acid metabolism and energy metabolism, and harmonizing the level of oxidized substances to exhibit neuroprotective effects.


Assuntos
Glucosídeos Iridoides , Glicosídeos Iridoides , Fármacos Neuroprotetores , Piranos , Animais , Ratos , Fármacos Neuroprotetores/farmacologia , Metabolômica , Iridoides/farmacologia , Aminoácidos , Biomarcadores
17.
Clin Exp Pharmacol Physiol ; 51(6): e13858, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636940

RESUMO

Intracerebral haemorrhage (ICH) presents significant challenges in clinical management because of the high morbidity and mortality, necessitating novel therapeutic approaches. This study aimed to assess the neuroprotective effects of loganin in a rat ICH model. Sprague-Dawley rats were used, subjected to a collagenase-induced ICH model, followed by loganin treatment at doses of 2.5, 5 and 10 mg/kg. Neurological functions were evaluated using the modified neurological severity score (mNSS) and a rotarod test. Results indicated a significant improvement in neurological functions in loganin-treated groups, evident from the mNSS and rotarod tests, suggesting dose-dependent neuroprotection. Loganin also effectively reduced the blood-brain barrier (BBB) permeability and cerebral oedema. Additionally, it mitigated cellular pyroptosis, as shown by terminal deoxynucleotidyl transferase dUTP nick-end labelling staining and western blot analysis, which indicated reduced levels of pyroptosis markers in treated rats. Furthermore, loganin's regulatory effects on the adenosine A2A receptor and myosin light chain kinase pathways were observed, potentially underpinning its protective mechanism against ICH. The study concludes that loganin exhibits significant neuroprotective properties in a rat ICH model, highlighting its potential as a novel therapeutic strategy. Despite promising results, the study needs further research to determine loganin's therapeutic potential in human ICH patients. This research paves the way for further exploration into loganin's clinical applications, potentially revolutionizing treatment strategies for patients suffering from intracerebral haemorrhage.


Assuntos
Iridoides , Fármacos Neuroprotetores , Humanos , Ratos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley , Piroptose , Hemorragia Cerebral/complicações , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/induzido quimicamente
18.
PLoS One ; 19(4): e0302102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625964

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. Neurodegeneration of the substantia nigra (SN) and diminished release of dopamine are prominent causes of this progressive disease. The current study aims to evaluate the protective potential of ethanolic extract of Mentha piperita (EthMP) against rotenone-mediated PD features, dopaminergic neuronal degeneration, oxidative stress and neuronal survival in a mouse model. Swiss albino male mice were assigned to five groups: control (2.5% DMSO vehicle), PD (rotenone 2.5 mg/kg), EthMP and rotenone (200mg/kg and 2.5mg/kg, respectively), EthMP (200 mg/kg), and Sinemet, reference treatment containing levodopa and carbidopa (20 mg/kg and rotenone 2.5mg/kg). Behavioral tests for motor functional deficit analysis were performed. Anti-oxidant capacity was estimated using standard antioxidant markers. Histopathology of the mid-brain for neurodegeneration estimation was performed. HPLC based dopamine level analysis and modulation of gene expression using quantitative real-time polymerase chain reaction was performed for the selected genes. EthMP administration significantly prevented the rotenone-mediated motor dysfunctions compared to PD group as assessed through open field, beam walk, pole climb down, stepping, tail suspension, and stride length tests. EthMP administration modulated the lipid peroxidation (LPO), reduced glutathione (GSH), and superoxide dismutase (SOD) levels, as well as glutathione-s-transferase (GST) and catalase (CAT) activities in mouse brain. EthMP extract prevented neurodegeneration in the SN of mice and partially maintained dopamine levels. The expression of genes related to dopamine, anti-oxidant potential and synapses were modulated in M. piperita (MP) extract treated mice brains. Current data suggest therapeutic capacities of MP extract and neuroprotective capacities, possibly through antioxidant capacities. Therefore, it may have potential clinical applications for PD management.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/prevenção & controle , Doença de Parkinson/metabolismo , Antioxidantes/metabolismo , Mentha piperita/metabolismo , Rotenona/farmacologia , Dopamina/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Modelos Animais de Doenças
19.
BMC Complement Med Ther ; 24(1): 140, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575941

RESUMO

BACKGROUND: In traditional Asian medicine, dried rhizomes of Ligusticum chuanxiong Hort. (Chuanxiong Rhizoma [CR]) have long been used to treat pain disorders that affect the head and face such as headaches. Furthermore, they have been used primarily for blood circulation improvement or as an analgesic and anti-inflammatory medicine. This study aimed to investigate the neuroprotective effects of a methanol extract of CR (CRex) on ischemic stroke in mice caused by middle cerebral artery occlusion (MCAO). METHODS: C57BL/6 mice were given a 1.5-h transient MCAO (MCAO control and CRex groups); CRex was administered in the mice of the CRex group at 1,000-3,000 mg/kg either once (single dose) or twice (twice dose) before MCAO. The mechanism behind the neuroprotective effects of CRex was examined using the following techniques: brain infarction volume, edema, neurological deficit, novel object recognition test (NORT), forepaw grip strength, and immuno-fluorescence staining. RESULTS: Pretreating the mice with CRex once at 1,000 or 3,000 mg/kg and twice at 1,000 mg/kg 1 h before MCAO, brought about a significantly decrease in the infarction volumes. Furthermore, pretreating mice with CRex once at 3,000 mg/kg 1 h before MCAO significantly suppressed the reduction of forepaw grip strength of MCAO-induced mice. In the MCAO-induced group, preadministration of CRex inhibited the reduction in the discrimination ratio brought on by MCAO in a similar manner. CRex exhibited these effects by suppressing the activation of astrocytes and microglia, which regulated the inflammatory response. CONCLUSIONS: This study proposes a novel development for the treatment of ischemic stroke and provides evidence favoring the use of L. chuanxiong rhizomes against ischemic stroke.


Assuntos
AVC Isquêmico , Fármacos Neuroprotetores , Camundongos , Animais , Infarto da Artéria Cerebral Média/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Metanol , Microglia , Astrócitos , Rizoma , Camundongos Endogâmicos C57BL
20.
Biol Res ; 57(1): 9, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491377

RESUMO

BACKGROUND: Parkinson's disease (PD) is characterized by death of dopaminergic neurons leading to dopamine deficiency, excessive α-synuclein facilitating Lewy body formation, etc. Latroeggtoxin-VI (LETX-VI), a proteinaceous neurotoxin discovered from the eggs of spider L. tredecimguttatus, was previously found to promote the synthesis and release of PC12 cells, showing a great potential as a drug candidate for PD. However, the relevant mechanisms have not been understood completely. The present study explored the mechanism underlying the effects of LETX-VI on dopamine and α-synuclein of PC12 cells and the implications for PD. RESULTS: After PC12 cells were treated with LETX-VI, the level of dopamine was significantly increased in a dose-dependent way within a certain range of concentrations. Further mechanism analysis showed that LETX-VI upregulated the expression of tyrosine hydroxylase (TH) and L-dopa decarboxylase to enhance the biosynthesis of dopamine, and downregulated that of monoamine oxidase B to reduce the degradation of dopamine. At the same time, LETX-VI promoted the transport and release of dopamine through modulating the abundance and/or posttranslational modification of vesicular monoamine transporter 2 (VMAT2) and dopamine transporter (DAT). While the level of dopamine was increased by LETX-VI treatment, α-synuclein content was reduced by the spider toxin. α-Synuclein overexpression significantly decreased the dopamine level and LETX-VI efficiently alleviated the inhibitory action of excessive α-synuclein on dopamine. In the MPTP-induced mouse model of PD, application of LETX-VI ameliorated parkinsonian behaviors of the mice, and reduced the magnitude of MPTP-induced α-synuclein upregulation and TH downregulation. In addition, LETX-VI displayed neuroprotective effects by inhibiting MPTP-induced decrease in the numbers of TH-positive and Nissl-stained neurons in mouse brain tissues. CONCLUSIONS: All the results demonstrate that LETX-VI promotes the synthesis and release of dopamine in PC12 cells via multiple mechanisms including preventing abnormal α-synuclein accumulation, showing implications in the prevention and treatment of PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Ratos , Camundongos , Animais , Dopamina/metabolismo , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/metabolismo , Células PC12 , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...